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Equivalence of Nystrom's Method 
and Fourier Methods for the Numerical Solution 

of Fredholm Integral Equations 

By Jean-Paul Berrut* and Manfred R. Trummer** 

Abstract. Nystrbm's method with the trapezoidal rule, and the Fourier method, produce the 
same approximation to the solution of an integral equation at the collocation points for 
Nystrom's method. This equivalence allows the derivation of error estimates for Nystrom's 
method, and gives an intuitive explanation for its good performance in the periodic case. The 
equivalence holds for Fourier methods with arbitrary orthogonal basis functions. The quadra- 
ture rule for numerical integration must have the collocation points as abscissae, and must 
yield the exact entries of the Gramian matrix of the orthogonal basis. 

1. Description of the Fourier Method. In this note we will prove a result on the 
equivalence of Nystrom's method and the Fourier method with orthogonal functions 
for the numerical solution of Fredholm integral equations. We encountered this 
question in the course of implementing the conformal mapping method described in 
[10], [16] with Fourier methods; see also [3], [4]. 

We will assume throughout that the discretized versions of integral equation (2) 
below have a unique solution. The restriction to the interval [0, 2 7] is only for the 
sake of convenience. Let h E L2([0, 2s] x [0, 2.r7]) be a Hilbert-Schmidt kernel 
defining the Hilbert-Schmidt integral operator 

(1) H: fEL2Hf := 2 j h(-, s)f(s) ds e L2. 

Let g E L2[0, 2qn ], and consider the Fredholm integral equation in L2[0, 27], 

(2) Xf + Hf = g, 

for an unknown f E L2[0, 27T]. X is a scalar, real or complex. 
If h and g are 2 T-periodic, an appealing procedure for solving (2) numerically is 

the Fourier method, which can be described as follows. We choose N equidistant 
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interpolating points sj:= tj:= 27rj/N, and interpolate the kernel h and the inhomo- 
geneity g by trigonometric polynomials*** 

M ' teims 

(3a) h (t, s) := E L a e e 
n=-M' n=-M 

M 

(3b) g-(t):= E dne, 
n=-M' 

where 

(3c) M'f= JM, if N isodd, N = 2M + 1; 
M - 1, if N is even, N = 2M. 

The coefficients anm and dn are the elements of the discrete Fourier transforms 
(DFTs) [7] 

(4a) a:= F(2)h E Il(2) (two-dimensional), 

(4b) d:= FNg E 1N (one-dimensional), 

of the bi-infinite N-periodic sequences h E rI () and g E rIN of the interpolated 
values hjk := h(tj, Sk) and gj:= g(tj) [7, p. 495], 

N-1 

(5a) a nm 1 E hjkWn w 
km 

j,k=O 

IN-1 
(5b) d= Nflgjw -jn, 

where w:= exp(27Ti/N). We seek a solution of the form 

M 

(6) (t)= L n 
n=-M' 

with unknown coefficients b. The values of f at the collocation points, fj = f(tj), 
can be expressed as the inverse DFT of the coefficients bn, f - Fk']b. Replacing the 
functions f, g, and h in (2) by their approximations f, g, and h, and taking into 
account the orthogonality of the basis functions e n, we obtain the following system 
of linear equations for the bn: 

(7) Xbn + , anmb_m = dn_ n =-M',. . ., M. 
m=-M 

In Section 3 we shall extend the above method to orthonormal Chebyshev systems, 
and show its equivalence to Nystrom's method. However, this special case is 
important enough to deserve special attention. Moreover, the powerful tools of 
Fourier analysis allow a quite elegant proof of the equivalence via the convolution 
theorem. 

***Our notation suppresses the dependence of h and g on N. 
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2. Equivalence of the Nystrom and the Fourier Method. The linear system (7) 
arising from the Fourier method is mathematically equivalent to the system obtained 
by Nystrom's method. Using the definition (5a) of the Fourier coefficients we get 

M' m' N-1 

E nm m hjkWJnW-km&m 
m=-M m=-M N j, k=O 

N-1 M' N-1 

(8) L EM hjkWkm b-m]Wjn 

N ~ N 

N-1 M' 

N ? ? rmi) b - mW jn 
j=O _m=-M 

The rm(i) are the elements of the one-dimensional DFT of the jth "6row" 
h( j):= { h 00 }k-o?f h= { hjk},= 

r ii) := Fh(j). 

In other words, the r(j) are the coefficients of the trigonometric polynomial which 
interpolates the univariate function s -> h(tj, s) at the points Sk. We remark that (8) 
leads to a very efficient implementation of the Fourier method, avoiding two-dimen- 
sional DFTs [3]. 

In view of the N-periodicity of the sequences involved, the last expression in 
brackets in (8) equals 

N-1 

E rm(j)b- m 
m=O 

which is the zeroth element of the convolution [7, p. 508] of the DFTs of the two 
sequences h(j) and f. The convolution theorem then yields 

M' 

E r m = ( FNh(') * FNf)o = (FN (h(j) .))0 
(9) m=-M 1 h(1 

k=O 

where h(i) - f denotes the Hadamard product of h(j) and f. According to (8), the 
matrix-vector product in Eq. (7) is the DFT of the sequence whose elements are the 
right-hand side of (9) for j = 0,..., N - 1. Thus, by applying the inverse DFT, 
FJ`11, to both sides of (7), we finally obtain 

N-1 

(10) Af +N h h(tj, Skfk = gj, =O.,N -1. 
k 0 

This is precisely the system of equations of Nystrom's method [2] with equidistant 
collocation points and the trapezoidal rule as quadrature formula. Thus, we have 
proved 

THEOREM 1. The values of the solution at the collocation (interpolation) points 
obtained by Nystrbm's method with the trapezoidal rule are identical to the values 
obtained by the Fourier method. 
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Before we proceed to the next section, some comments on the above equivalence 
are in order. 

(a) This equivalence provides an intuitive explanation why one cannot expect 
good results from Nystrbm's method with the trapezoidal rule unless the kernel and 
the inhomogeneity of the integral equation are periodic. On the other hand, in the 
periodic case, Nystrom's method is preferable with respect to computing time, 
because no DFTs have to be computed. This saves O(N2 log N) operations. The 
values of the interpolating trigonometric polynomial at intermediate points t # tk 

can then be computed very efficiently by barycentric formulas [9], [5]. 
(b) The equivalence result does not make the Fourier method obsolete. There are 

situations where Nystrom's method is not applicable, but the Fourier method is. One 
example is the case of weakly singular equations, which play quite a prominent role 
in numerical conformal mapping and two-dimensional boundary value problems 
[15], [12], [3]. Another example is provided in [4], where the kernel is not given 
explicitly, but defined as the harmonic conjugate of a known function. 

(c) The equivalence is also interesting from a theoretical point of view. It allows a 
simple proof of the exponential asymptotic convergence of Nystrom's method if 
both the kernel and the inhomogeneity are analytic. Indeed, if the operator I + H is 
bijective in L2[0,2 T], and if IIh - hit2 - 0, ol - g9l2 - 0, then, for N sufficiently 
large, (7) has a unique solution f, and the f converge to the exact solution f in the 
L2-norm. Moreover, the estimate 

(11) f1-f112 < c(1h - h112 +11g - g9l2) 

holds with a constant C depending only on 11(l + H)1ii2 and 'II i2 (cf. [13, p. 480]). 
If h and g are periodic and analytic, then the convergence of h and A to h and g, 
respectively, is exponentially fast (cf. the lemma on p. 490 in [7]). 

(d) If N is even, the interpolating polynomials h and A of degree M are not 
unique; instead of (3), one usually chooses the so-called balanced trigonometric 
polynomials (cf. [8]). However, except in extreme cases where the exact coefficients 
with index +M are dominant, the difference between the two approaches is 
negligible. Indeed, in view of the aliasing formula [7, p. 489], the error committed in 
replacing a function by its interpolating trigonometric polynomial is of the order of 
magnitude of the computed coefficients with greatest indices [3]. 

3. Generalization to Orthonormal Chebyshev Systems. In the sequel we will refer 
to Fourier type methods as the Fourier method described above with the exponentials 
replaced by any orthonormal basis N1,... , p in L2[0, 2wv]. The Fourier method can 
be viewed as a discrete Galerkin method with the fj serving as test and trial 
functions. However, in the Fourier method the kernel and the right-hand side are 
approximated by a linear combination of the 4,, and all subsequent calculations are 
performed in Fourier space. Thus, the Fourier method differs from the standard 
Galerkin method as described in [2], [6]. The N collocation points tj,t and the N 
weights wj, 1 < j < N, define the quadrature rule Q by 

N 

(12) Q+: wjA (tj) - 2 (s) ds 
T=1 

t The t are no longer assumed to be equidistant. 
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These collocation points and the quadrature rule Q are used in Nystrom's method, 
leading to the system of linear equations 

N 

(13) Axi + F, wjh(ti, tj)xj = g(ti), 1 < i < N, 
j=1 

where the xi are approximations to f(ti). 
On the other hand, Q is also used to compute'the "Fourier coefficients" with 

respect to our orthonormal basis 01,..., 'N. The space L2[0,2,r] is endowed with 
the scalar product 

(f g) = 2 f f(t) g(t) dt. 

Let f0, .I O. N be an orthonormal Chebyshev system (see, e.g., [14]). We attempt to 
approximate the solution in the subspace DN spanned by the Pi: 

N 

(14) f(t)- E b(t). 
j=1 

To that end, we approximate g and h by the functions g and h in N and 
DN X DN respectively, 

N N N 

(15) g(t) = ,d4i(t), ih(t,s) = E aijpi(t)j(s) 
i= 1 1i=1 j=1 

Taking (g, pi) for the di and (4i, H4j) for the aij gives the best approximations in 
(N in the L2 sense. However, by using our quadrature formula (12) to evaluate these 
scalar products, we obtain 

N N 

(16) a1 = Y. wpci(tp)h(tp,tq)kj(tq) wq 
p=l q=1 

and 
N 

(17) di= E wP i(tP)g(tP) 
p=l 

Equation (2) is then approximated by the linear system of equations (cf. (7)) 
(18) (XI + A)b = d. 

THEOREM 2. Let { }, 1 < i < N, be an orthonormal Chebyshev system, and 
suppose the quadrature rule (12) has nonzero weights and evaluates the Gramian 
matrix ('i, p4) exactly, i.e., 

N 

(19) E wpoi (tp) (pi(tp) = sii, 
p=1 

where Bij is the Kronecker symbol. Then the values of the solution at the points tj 
obtained by the Fourier method described above are identical to the values xj obtained 
by Nystrbm's method. 

Proof. We start by showing that the Fourier method is actually equivalent to the 
standard Galerkin scheme under the conditions stated. The key observation is, that 
the numerical approximations to <g - g, 4i) and ((H - H)oi, 4j) vanish because of 
the orthogonality relation (19). H denotes the integral operator with kernel h. We 
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write down the explicit formula only for the first scalar product: 
N N __ N 

? Wq Pj(tq) (tq) = wq 4j (tq) di (tq) 
q=1 q=1 

N __ N __ 

= EWq4(j (tq) F E W,p+(tp) 9(tp)(Pi(tq)) 

(20) q=1 i=1 P=1 
N N (N 

= E~i E1 (1Wqckj(t q)ki(tq) Wpki(tp)g(tp) 
i=1 p=1 q=1 

N 

= E (p j(tp) g(tp), 
p=1 

because the inner sum in the last equation equals 3ij. Therefore (18) is equivalent to 
the system of equations arising from the standard (discrete) Galerkin scheme 

N N 

(21) E wp X.xp + E wqh(tp,tq)xq-9(tp) )j(tp) = 0, 
P=1 q=1I 

where the xi are again approximations to f(ti). Obviously, if xi, i = 19,..., N, is a 
solution of the Nystrom system (13), it will also be a solution of the Galerkin 
equations (21). This equivalence of Nystrom's method and the discrete Galerkin 
method (see also [6]) together with our uniqueness assumption completes the proof. 

Remarks. (1) For first-kind equations (X = 0), the result holds even if the 
Gramian is not integrated exactly. 

(2) Prenter [11] has shown that the full discretization of Nystrom's method leads 
to the same linear system of equations as the collocation method suggested in her 
paper. This collocation method approximates the solution in a space of spline 
functions (piecewise Lagrange polynomials). The collocation points are the knots, 
and the quadrature formula integrates all functions in the approximating subspace 
exactly. 

Clearly, the theorem applies to the classical Fourier method of Sections 1 and 2. 
Indeed, the trapezoidal rule integrates trigonometric polynomials of appropriate 
degree exactly. Another example to which the theorem can be applied is the 
following. Take the Legendre polynomials of degree < N - 1 as the orthonormal 
Chebyshev system, and the N-point Gauss-Legendre quadrature formula for Q (see, 
e.g., [1]). The Gramian is computed exactly, because polynomials of degree < 2N - 
1 are integrated exactly. 
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